Digital Equipment Corporation EK-SWRA2-IG Specifications

Browse online or download Specifications for Networking Digital Equipment Corporation EK-SWRA2-IG. Digital Equipment Corporation EK-SWRA2-IG Specifications User Manual

  • Download
  • Add to my manuals
  • Print
  • Page
    / 383
  • Table of contents
  • BOOKMARKS
  • Rated. / 5. Based on customer reviews
Page view 0
digital equipment corporation
maynard, massachusetts
AlphaServer 8200/8400
System Technical Manual
Order Number EK–T8030–TM. A01
The Digital AlphaServer 8200 and 8400 systems are designed around the
DECchip 21164 CPU. The TLSB is the system bus that supports nine nodes in
the 8400 system and five nodes in the 8200 system. The AlphaServer 8400 can
be configured with up to six single or dual processor CPU modules (KN7CC),
seven memory modules (MS7CC), and three I/O modules (KFTHA and
KFTIA). One slot is dedicated to I/O and is normally occupied by the inte-
grated I/O module (KFTIA) that supports PCI bus, XMI, and Futurebus+
adapters. All other nodes can be interchangeably configured for CPU or mem-
ory modules. The AlphaServer 8200 can be configured with up to three CPU
modules, three memory modules, and three I/O modules.
Page view 0
1 2 3 4 5 6 ... 382 383

Summary of Contents

Page 1 - System Technical Manual

digital equipment corporationmaynard, massachusettsAlphaServer 8200/8400System Technical Manual Order Number EK–T8030–TM. A01The Digital AlphaServer

Page 2

xDDR0:3—Data Diagnostic Registers ... 7-1067.6 I/O Port-Specific Registers...

Page 3 - Contents

4-6 Memory Subsystem• State transition due to TLSB activityTable 4-3 shows how the cache state can change due to bus activity.TLSB writes always cle

Page 4

Memory Subsystem 4-7 Table 4-2 State Transition Due to Processor ActivityProcessorRequest Tag Probe Result1Action on TLSBTLSBResponseNext Ca

Page 5 - Chapter 3 CPU Module

4-8 Memory Subsystem Table 4-3 State Transition Due to TLSB ActivityTable 4-4 shows how the CPU module responds to bus activity directed atthese ad

Page 6 - Chapter 5 Memory Interface

Memory Subsystem 4-9the write must be reissued by the DECchip 21164 to the TLSB as a WriteBlock. In the case that the Set Dirty bit is held o

Page 7 - Chapter 6 I/O Port

4-10 Memory SubsystemDuring memory writes, TLSB memory modules store write data and ECCcheck bits as they are received off the TLSB. A minor modifi

Page 8

Memory Subsystem 4-114.3.1.1 Control Address Interface The control address interface (CTL) is a single gate array. It provides theinterface

Page 9 - Chapter 7 System Registers

4-12 Memory SubsystemDRAM arrays. The MDI includes data buffers, ECC checking logic, self-test data generation and checking logic, and CSRs. MDI con

Page 10 - Glossary

Memory Subsystem 4-13four memory modules, with at least two strings each, supports a maximumof 8-way interleaving.4.3.2 Memory Organization

Page 11

4-14 Memory Subsystem Figure 4-5 Two-Way Interleave of a 128-Mbyte DRAM ArrayMemory modules of different capacities can be interleaved as a set with

Page 12

Memory Subsystem 4-15module can result in reduced system throughput due to common data pathcontention between the two banks. At the module le

Page 13

xi 4-3 Cache Index and Tag Mapping to Block Address (16MB)... 4-4 4-4 Memory Module Block Diagram ...

Page 14

4-16 Memory Subsystemgroup of DRAM arrays. The default mode optimizes interleaving of mem-ory in any arrangement of memory modules. If the FEPROM

Page 15 - Document Structure

Memory Subsystem 4-17sole to locate and map out bad areas of physical address space. Self-test isinvoked during system power-up, when a TLS

Page 16 - Documentation Titles

4-18 Memory SubsystemTo exercise the array at its maximum operating speed, banks 0 and 1 arealways interleaved during self-test if the module conta

Page 17

Memory Subsystem 4-19NOTE: Successful execution is not a measure of the array integrity. It indicates thatevery location in memory space has

Page 18

4-20 Memory Subsystem Table 4-8 Self-Test Times: Moving Inversion, No Errors Found Module Capacity (Mbytes) Test Ti

Page 19 - Table 2 Related Documents

Memory Interface 5-1Chapter 5Memory InterfaceThe memory interface to the TLSB consists of three parts:• Control address interface• Memory dat

Page 20

5-2 Memory Interface5.1.1.1 Memory Bank State MachineThe CTL contains two TLSB control state machines, one for each memorybank. The state machines

Page 21 - Overview

Memory Interface 5-3command is one of the factors in determining if the command is acknowl-edged (TLSB_CMD_ACK) by this node. Table 5-1 show

Page 22 - 1.2 Bus Architecture

5-4 Memory Interfacereceived from the TLSB bus. TLSB_SEND_DATA is also used to check forproper bus sequencing. Note that the TLSB_CMD_ACK and TLSB

Page 23 - 1.3 CPU Module

Memory Interface 5-5• Write • Refresh The TLSB memory is designed to operate within the following TLSB clockcycle times: • 10.0 to 11.299 ns

Page 24 - 1.4 Memory Module

xii 2-7 TLSB Node Base Addresses ... 2-28 2-8 TLSB CSR Address M

Page 25 - 1.5 I/O Architecture

5-6 Memory Interface Table 5-2 Two Strings—128MB/512MB Row/Column Address Bit Swapping5.1.3.2 256MB/1024MB Memory Module AddressingTable 5-3 shows

Page 26 - 1.6 Software

Memory Interface 5-7 Table 5-3 Four Strings—256MB/1024MB Row/Column Address Bit Swapping5.1.3.3 512MB/2048MB Memory Module AddressingTable 5

Page 27 - 1.6.4.1 ROM-Based Diagnostics

5-8 Memory Interface Table 5-4 Eight Strings—512MB/2048MB Row/Column Address Bit SwappingDRAM TypeNo. of BanksInterleavedDRAM Address

Page 28 - 1.6.4.3 Online Exercisers

Memory Interface 5-95.2 Memory Data InterfaceThe memory data interface (MDI) is comprised of four chips connected tothe DRAM array on one si

Page 29 - TLSB Bus

5-10 Memory Interface Figure 5-1 64-Bit ECC Coding SchemeThe received write data is checked for ECC errors. Any detected error islogged as appropri

Page 30 - 2.1.4 Error Handling

Memory Interface 5-115.2.2.5 Write Data Out SelectionA 2:1 multipexer and a tristate enable capability are provided for interfac-ing the writ

Page 31 - 2.1.5 TLSB Signal List

5-12 Memory Interfaceon all CSR reads from memory. The ECC bits are generated across bits<63:0> and transmitted on TLSB_ECC<7:0>.5.2.4

Page 32 - 2-4 TLSB Bus

Memory Interface 5-13in these bits. This field is undefined when either CRECC, CWECC, orECC is zero.5.3 CSR InterfaceThe CSR interface, use

Page 33 - 2.2 Operation

5-14 Memory Interface• Multiplexing of local CTL CSRs and the data bytes within them • Byte-wide parity generation and checking of the CSRCA bus 5.3

Page 34 - 2.2.3 Address Bus Concepts

Memory Interface 5-15The memory adapter supports TLSB broadcast writes to its MCR registerat address location BSB+1880 (byte address). This

Page 35 - TLSB Bus 2-7

xiii 6-30 DMA Masked Write Packet Sizes ... 6-58 6-31 DMA Unmasked Write

Page 36 - 2.2.3.2 CSR Addressing Scheme

5-16 Memory Interfaceonto the CSRCA bus during a read of one of its internal CSRs. During awrite command to one of the CTL’s CSRs, a LD_EN signal f

Page 37 - TLSB Bus 2-9

Memory Interface 5-17 Table 5-7 CSRCA Data Bus MasterFor a read command, the selected chip drives the appropriate data on theCSRCA bus. Eac

Page 38 - Figure 2-2 Address Decode

5-18 Memory Interface5.3.2.4 CSRCA ParityThe CSRCA bus is protected by byte-wide odd parity. All data transmittedover this bus is accompanied by a

Page 39 - 2.2.3.4 Bank Available Status

I/O Port 6-1Chapter 6I/O PortThe I/O port is the interface of the I/O subsystem to the TLSB bus. Twomodules can be used for I/O operations:

Page 40 - 2-12 TLSB Bus

6-2 I/O PortThe I/O port interfaces the TLSB bus to up to four different I/O busesthrough separate I/O bus adapter modules. Digital provides three

Page 41 - 2.2.4.8 Early Arbitration

I/O Port 6-3The two Up Hose HDRs receive packets from the four Up Hoses (two hoses per HDR) and transmit them to the IDRs through the Turbo V

Page 42 - 2.2.4.10 Look-Back-Two

6-4 I/O Portmation between the TLSB and I/O adapter modules by transmitting andreceiving packets across the hose(s). Mailbox, I/O window, device i

Page 43 - 2.2.4.14 CSR Bank Contention

I/O Port 6-5 Table 6-1 I/O Port Transaction Types6.3.1 Mailbox TransactionsSome systems provide access to CSRs on external I/O buses (I/O

Page 44 - 2.2.5 Address Bus Cycles

6-6 I/O PortThe I/O port can support up to 16 CPU chips. However, if more than fourCPU chips are present, any additional CPU chip must share a TLMB

Page 45 - 2.2.6 Address Bus Commands

I/O Port 6-76.3.2 I/O Window Space TransactionsCSRs that exist on some external I/O buses are accessed through I/O win-dow space transactio

Page 46 - 2.2.7.2 Hold

xiv 7-50 STDER A, B, C, D Register Bit Definitions... 7-104 7-51 STDERE Register Bit Defin

Page 47 - 2.2.8.1 Data Return Format

6-8 I/O Port6.3.2.2 CSR Read Transactions to I/O Window SpaceA CSR read command to node 4 through 8 I/O window space causes an I/Oport installed in

Page 48 - 2.2.8.5 Data Wrapping

I/O Port 6-9Therefore, when an interrupt occurs on an I/O bus (that is, XMI, Future-bus+, or PCI), the I/O bus adapter must first acquire the

Page 49 - 2.2.8.6 ECC Coding

6-10 I/O Port• I/O port generated error interrupts transmit a special vector on the TLSB, which must be preloaded by system software into the I/O po

Page 50 - 2.2.8.9 TLSB_SHARED

I/O Port 6-11DMA IREAD command, the XMI I/O adapter acknowledges the IREADand pends the transaction. This frees the XMI for other bus traff

Page 51 - 2.2.8.11 TLSB_STATCHK

6-12 I/O Portrequires a single TLSB bus write transaction and is always a doublehexword. A DMA write request packet is executed as a disconnected (w

Page 52 - 2-24 TLSB Bus

I/O Port 6-13detected on the Up Hose (for example, a parity error or sequence error), orif the TLSB bus Read-Modify-Write operation is unsuc

Page 53 - 2.3 CSR Addressing

6-14 I/O PortWhen an I/O port receives a window write status return packet on the UpHose, it decrements its remote adapter node buffer counters and

Page 54 - Address

I/O Port 6-15must not overwrite a mailbox that is still in use (<DONE> not set by theI/O port).The I/O system architecture requires t

Page 55 - BXB-0780A-94

6-16 I/O Port Figure 6-3 Sparse Address Space ReadsThe returned quadword data for a sparse window read command is repli-cated four times on the firs

Page 56 - 2-28 TLSB Bus

I/O Port 6-17 Table 6-3 Sparse Address Space Read Field Descriptions6.4.2.2 Sparse Address Space WritesFigure 6-5 illustrates the TLSB addre

Page 57 - TLSB Bus 2-29

xvPrefaceIntended AudienceThis manual is intended for developers of system software and for servicepersonnel. It discusses the AlphaServer 8200/8400

Page 58 - 2.3.2 TLSB Mailboxes

6-18 I/O Port Figure 6-5 Sparse Address Space Writes Figure 6-6 Sparse Address Space Write DataBXB0797.AI0123456789101112131415161718192021222324252

Page 59 - TLSB Bus 2-31

I/O Port 6-19 Table 6-4 Sparse Address Space Write Field DescriptionsNote that the CSR data size on the TLSB is always a hexword. Valid bit

Page 60 - 2.3.3 Window Space I/O

6-20 I/O Port Table 6-5 Sparse Address Write Length EncodingNOTE: The byte-length code is transmitted on the hose as LEN<1:0>. The Lengthf

Page 61 - BXB-0541h-94

I/O Port 6-21 Table 6-6 Dense Address Space Transaction Field DescriptionsThe data appears on the first data cycle of the TLSB data bus. Ei

Page 62 - 2.4.1.4 System Fatal Errors

6-22 I/O Port Figure 6-8 Dense Address Space Write DataThe returned hexword data for a dense window read command is asserted on the first data word

Page 63 - 2.4.3.1 Transmit Check Errors

I/O Port 6-236.5 TLSB InterfaceAll TLSB bus transactions consist of one command/address cycle on the ad-dress bus and two data cycles on the

Page 64 - 2.4.3.3 No Acknowledge Errors

6-24 I/O Port Table 6-7 Transaction Types Supported by the I/O PortThe I/O port performs three primary functions on the TLSB: • DMA transactions

Page 65 - 2.4.3.5 Bank Lock Error

I/O Port 6-25 Table 6-8 Wrapped ReadsInterlocked Read/Unlock Write TransactionsVAX CI-port architecture (VAXport) devices require Interlocke

Page 66 - 2-38 TLSB Bus

6-26 I/O PortModify-Write on the TLSB. The quadword of data that the I/O devicesends in the masked write command contains the original data with th

Page 67 - 2.4.4 Data Bus Errors

I/O Port 6-27and so on. Figure 6-10 shows the format of the data used by the I/O port inthe CSR write (interrupt) transaction. Figure 6-10

Page 68 - 2.4.4.2 Double-Bit ECC Errors

xviKFTIA and KFTHA support the PCI bus, XMI bus, and the Futurebus+,depending on the system in which they are used. The chapter describesthe transact

Page 69 - 2.4.4.6 Transmit Check Errors

6-28 I/O Porthose). The I/O port, however, could post up to five interrupts to the CPUsat IPL 17 (one per hose plus one I/O port generated error i

Page 70 - 2.4.5 Additional Status

I/O Port 6-29in strict first-come, first-served order. Any other writes to the TLMBPRregister by a CPU that already has two mailbox transact

Page 71 - 2.4.6.1 Read Errors

6-30 I/O PortIf the Error bit is set in the window Read Data Return packet, the I/O portgenerates a TLSB CSR (broadcast) write to the CSR Read Data

Page 72 - 2-44 TLSB Bus

I/O Port 6-316.5.2.1 Node 8 I/O Port Arbitration Mode SelectionSeveral mode-selectable lockout avoidance algorithms are implemented toguarant

Page 73 - 2.4.6.2 Write Errors

6-32 I/O Port Figure 6-11 Minimum Latency ModeNote that NEXT_REQ_HI<n> would have become asserted in cycle 6 evenif the I/O port did not reque

Page 74 - 2-46 TLSB Bus

I/O Port 6-33the Write Bank Unlock portion of a Read-Modify-Write operation. Figure6-13 shows the flow for this arbitration mode. Figure 6-1

Page 75 - CPU Module

6-34 I/O Portcommands are necessary to ensure an atomic operation and maintaincache coherency. 6.5.2.3 Bank Collision Effect on PriorityA bank coll

Page 76 - 3-2 CPU Module

I/O Port 6-356.6 Hose InterfaceThe I/O port communicates with the I/O bus adapters over dual-cablebuses. These buses are called hoses. Th

Page 77 - 3.1.4 DIGA

6-36 I/O Portport receives a Window Status Return packet on the Up Hose, it decre-ments that hose’s counter. The I/O port does not transmit windowr

Page 78 - 3.2 Console

I/O Port 6-376.6.2.1 Sparse Address MappingA sparse address space uses low-order TLSB address bits to encode thesize of the access and its by

Page 79 - 3.2.1 Serial ROM Port

xvii Table 1 Digital AlphaServer 8200/8400 DocumentationTitle Order NumberHardware User Information and InstallationOperations ManualEK–T8030–OPSite P

Page 80 - 3.3 CPU Module Address Space

6-38 I/O Port Table 6-10 Down Hose Signals Table 6-11 Up Hose SignalsTable 6-12 shows the UPCTL<3:0> L encoding.Signal DescriptionDND<31:

Page 81 - 3.3.1 Memory Space

I/O Port 6-39 Table 6-12 UPCTL<3:0> EncodingTable 6-13 shows the information given by the hose status signals.6.6.4 Hose Packet Spec

Page 82 - 3.3.2.2 TLSB CSR Space

6-40 I/O Port Table 6-13 Hose Status Signals Table 6-14 Down Hose Packet Type CodesSignals

Page 83 - 3.3.2.3 Gbus Space

I/O Port 6-41Mailbox Command PacketThe Mailbox Command packet is used by processors to access control and status registers in adapters on the

Page 84 - 3.4.3 Flow Control

6-42 I/O Port Table 6-15 Mailbox Command Packet DescriptionDMA Read Data Return PacketThe DMA Read Data Return packet returns data previously reque

Page 85 - 3.4.4 PCI Accesses

I/O Port 6-43The DMA Read Data Return packet is supported by the Mailbox Only, I/OWindow, Full, and Memory Channel variants of the hose proto

Page 86 - 3-12 CPU Module

6-44 I/O PortDMA Read Data Return packet with the error bit set is returned across theDown Hose. Figure 6-16 DMA Read Data Return Packet with Error

Page 87 - CPU Module 3-13

I/O Port 6-45not return an INTR/IDENT Status Return packet. Figure 6-17 shows theINTR/IDENT Status Return packet. Figure 6-17 INTR/IDENT Sta

Page 88 - 3.5 CPU Module Errors

6-46 I/O Port Table 6-19 Sparse Window Read Command Packet DescriptionSparse Window Write Command PacketThe Sparse Window Write command packet is u

Page 89 - 3.5.1.3 Faults

I/O Port 6-47 Figure 6-19 Sparse Window Write Command PacketTable 6-20 gives the description of the Sparse Window Write Commandpacket. Dense

Page 90 - 3.5.2 Address Bus Errors

xviiiTable 1 Digital AlphaServer 8200/8400 Documentation (Continued)Title Order NumberKZMSA Adapter Installation GuideEK–KXMSX–INRRDCD Installation G

Page 91 - 3.5.2.1 Transmit Check Errors

6-48 I/O Port Table 6-20 Sparse Window Write Command Packet Description Figure 6-20 Dense Window Read Command PacketTable 6-21 gives the descriptio

Page 92 - 3.5.3 Data Bus Errors

I/O Port 6-49 Table 6-21 Dense Window Read Command Packet DescriptionField DescriptionClock 1, <31:30>Are always zero. Clock 1, <29

Page 93 - 3.5.4 Multiple Errors

6-50 I/O Port Figure 6-21 Dense Window Write Command PacketTable 6-22 gives the description of the Dense Window Write Commandpacket. 31 30 29 26 25

Page 94

I/O Port 6-51 Table 6-22 Dense Window Write Command Packet Description Figure 6-22 Byte Mask Field Memory Chanel Write PacketThe Memory Chan

Page 95 - Memory Subsystem

6-52 I/O Port Figure 6-23 Memory Channel Write PacketTable 6-23 gives the description of the Memory Channel Write packet. 6.6.4.2 Up Hose Packet Sp

Page 96 - 4.2 Backup Cache

I/O Port 6-53 Table 6-23 Memory Channel Write Packet Description Figure 6-24 Mailbox Status Return PacketTable 6-24 gives the description of

Page 97 - 4.2.2 B-Cache Tags

6-54 I/O Port Table 6-24 Mailbox Status Return Packet DescriptionDMA ReadThe DMA Read packet is a request on the Up Hose from the I/O bus adapter t

Page 98 - BXB0822.AI

I/O Port 6-55 Table 6-25 DMA Read Packet Description ADR<39:0> is the target address for the TLSB memory read. It must benaturally a

Page 99 - Table 4-1 B-Cache States

6-56 I/O Port Figure 6-26 Interlock Read PacketTable 6-27 gives the description of the IREAD packet. Table 6-27 Interlock Read Packet Description

Page 100 - 4.2.8 Lock Registers

I/O Port 6-57DMA Masked Write with DataThe DMA Masked Write Packet is a request on the Up Hose from the I/O bus adapter to the I/O port for a

Page 101 - Memory Subsystem 4-7

xix Table 2 Related DocumentsTitle Order NumberGeneral Site PreparationSite Environmental Preparation GuideEK–CSEPG–MASystem I/O OptionsBA350 Modular

Page 102 - 4-8 Memory Subsystem

6-58 I/O Port Table 6-29 DMA Masked Write Packet DescriptionADR<39:0> is the target address for the DMA masked write and must be naturally al

Page 103 - 4.3 Main Memory

I/O Port 6-59DMA Unmasked Write with DataThe DMA Unmasked Write packet is a request on the Up Hose from theI/O bus adapter to the I/O port f

Page 104 - BXB0798.AI

6-60 I/O Port Table 6-31 DMA Unmasked Write Packet DescriptionADR<39:0> is the target address for the memory write and must be natu-rally ali

Page 105

I/O Port 6-61 Table 6-32 INTR/IDENT Status Return Packet DescriptionSparse Window Read Data Return PacketThe Sparse Window Read Data return

Page 106 - 4.3.1.3 DRAM Arrays

6-62 I/O Port Table 6-33 Sparse Window Read Data Return Packet DescriptionDense Window Read Data Return PacketThe Dense Window Read Data Return pac

Page 107 - 4.3.2 Memory Organization

I/O Port 6-63 Figure 6-31 Dense Window Read Data Return PacketTable 6-34 gives the description of the dense window read data returnpacket.

Page 108 - BXB-0389A-92

6-64 I/O PortWindow Write Status Return PacketThe Window Write Status Return packet is used by adapters on remote buses that support I/O window spac

Page 109 - BXB-0307-92

I/O Port 6-656.6.5 Hose ErrorsFour types of errors affect the hoses: • Parity errors on the transmitted data/control information• Illegal p

Page 110 - 4.3.6 Self-Test

6-66 I/O Port6.7 I/O Port Error HandlingThe I/O port provides a high reliability electrical environment. Conse-quently, error handling is biased t

Page 111 - 4.3.6.1 Self-Test Modes

I/O Port 6-67If the I/O port detects a hard internal error. it sets the appropriate errorbit in either the ICCNSE register or one of the IDP

Page 112 - 4.3.6.3 Self-Test Operation

First Printing, May 1995The information in this document is subject to change without notice and should not be construed as a com-mitment by Digital E

Page 114

6-68 I/O PortEach IDR on the I/O port receives 64 data bits and 8 ECC bits from the TLSB. Error checking is performed and if a data error is detect

Page 115 - Memory Interface

I/O Port 6-69another node and ensure that TLSB_FAULT is only asserted for two cy-cles.When the I/O port detects assertion of TLSB_FAULT on th

Page 116 - 5.1.1.5 TLSB Command Decode

6-70 I/O PortHose PWROK Transitioned and Hose Error are technically hose errors, not internal I/O port errors. However, they are handled by the I/O

Page 117 - 5.1.1.8 TLSB Sequence Control

I/O Port 6-71The I/O port assertion checks TLSB_CMD_ACK only when it is being as-serted by the the I/O port. If the I/O port detects a misma

Page 118 - 5.1.2 DRAM Control

6-72 I/O Porttected, the I/O port does not issue the transaction on the TLSB. It simplyaborts that transaction by transmitting a UTV_ERROR_A (or B)

Page 119 - Memory Interface 5-5

I/O Port 6-73ting <UECC>. A UECC error causes the I/O port to set TLBER<UDE>and assert TLSB_DATA_ERROR. An IPL 17 is also poste

Page 120 - 5-6 Memory Interface

6-74 I/O Port6.7.8.6 Transmit Check ErrorsThe I/O port level checks the TLSB_D<255:0> and TLSB_ECC<31:0>fields when it is driving data o

Page 121 - Memory Interface 5-7

I/O Port 6-75• The TLFADRn registers record the address, command, and bank num-ber from the command.These registers can only hold information

Page 122 - 5-8 Memory Interface

6-76 I/O PortThe ICR up Turbo Vortex interface checks for the following types of errors:• Parity errors• Sequence errors• Buffer overflow errors• I

Page 123 - 5.2 Memory Data Interface

I/O Port 6-77assertion of this signal causes ICCNSE<DN_VRTX_ERRORn> to set. AnIPL 17 interrupt will also be posted if ICCNSE<INTR_N

Page 124 - 5-10 Memory Interface

Overview 1-1Chapter 1OverviewThe computer system is an AlphaGeneration server very similar to butwith twice the performance of DEC 7000/10000

Page 125 - 5.2.3.3 CSR Read Data ECC

6-78 I/O Portserts TLSB_FAULT. The catastrophic failure requires a reset of the I/Oport to return the I/O port to a known state. 6.7.11.4 Hose Stat

Page 126 - 5-12 Memory Interface

I/O Port 6-79• One external hose connection• Optional multimode FDDI daughter card or UTP FDDI daughter card• Optional 4-Mbyte NVRAM daughter

Page 127 - 5.3.1 CTL CSR Functions

6-80 I/O Portsupports one Turbo Vortex bus (Turbo Vortex Bus A) and two hose buses:internal hose (Hose 0) and external hose (Hose 1).The integrated

Page 128 - 5.3.1.1 TLSB CSR Control

I/O Port 6-81 Figure 6-35 Integrated I/O Section of the KFTIA6.8.1.1 PCI InterfaceThe PCI interface provides a host bridge to two physical PC

Page 129 - MAI CSR Sequencer

6-82 I/O PortThe PCI interface consists of the following sections: • Two HPC (hose to PCI) gate arrays • Map RAM• Up Hose control logic These sectio

Page 130 - 5.3.2.1 MDI CSR Sequencer

I/O Port 6-836.8.1.3 Ethernet PortsThe integrated I/O port supports two Ethernet ports and uses the twisted-pair (10baseT) connection. The

Page 131 - 5.3.2.3 CSR Multiplexing

6-84 I/O Port6.8.2.2 Mailbox TransactionAll mailbox transactions are executed by the HPC as a PCI master.Mailbox transactions forwarded from the HDR

Page 132 - 5.3.2.4 CSRCA Parity

I/O Port 6-85rupt’s vector and merging it with a programmable device IPL. TheINTR/IDENT is then sent to the HDR over the Up Hose. Because th

Page 134 - 6.2 I/O Port Main Components

System Registers 7-1Chapter 7System RegistersThe system registers are divided into two main groups:• TLSB registers• Node-specific registersT

Page 135 - BXB0795.AI

1-2 OverviewFuturebus+, or PCI bus. The local I/O options on the integrated I/Oport appear to software as a PCI bus connected to a hose.Figure 1-1

Page 136 - 6-4 I/O Port

7-2 System Registers• When the value of a bit position is given explicitly in a register dia-gram, the information conveyed is as follows:• The entr

Page 137 - 6.3.1 Mailbox Transactions

System Registers 7-3 Table 7-1 TLSB Node Space Base Addresses Node Module Physical Base Address (BB) Address Field &

Page 138 - 6-6 I/O Port

7-4 System Registers7.3 TLSB RegistersTable 7-2 lists the TLSB registers. Descriptions of registers follow. Table 7-2 TLSB RegistersMnemonic Name

Page 139 - I/O Port 6-7

System Registers 7-5TLDEV—Device Register Table 7-3 TLDEV Register Bit DefinitionsAddressAccessBB + 0000 R/WThe TLDEV register is loaded du

Page 140 - 6.3.3.1 Remote Bus Interrupts

7-6 System Registers Table 7-3 TLDEV Register Bit Definitions (Continued)Name Bit(s) Type FunctionDTYPE<15:0> R/W, 0 Device Type. Identifi

Page 141 - I/O Port 6-9

System Registers 7-7TLBER—Bus Error RegisterAddressAccessBB + 0040 R/WThe TLBER register contains bits that are set when a TLSB nodedetects e

Page 142 - 6.3.4 DMA Read Transactions

7-8 System Registers Table 7-4 TLBER Register Bit DefinitionsName Bit(s) Type FunctionDTO<31> W1C, 0 Data Timeout. Set when a commanding no

Page 143 - I/O Port 6-11

System Registers 7-9Table 7-4 TLBER Register Bit Definitions (Continued)Name Bit(s) Type FunctionDS3<23> R, U Data Syndrome 3. A stat

Page 144 - 6.3.6.1 DMA Unmasked Write

7-10 System RegistersTable 7-4 TLBER Register Bit Definitions (Continued)Name Bit(s) Type FunctionUDE<16> W1C, 0 Uncorrectable Data Error. S

Page 145 - I/O Port 6-13

System Registers 7-11Table 7-4 TLBER Register Bit Definitions (Continued)Name Bit(s) Type FunctionACKTCE<6> W1C, 0 Acknowledge Transmi

Page 146 - 6.4 Addressing

Overview 1-3bus transactions may be overlapped, and these transactions may be over-lapped with bus arbitration. Arbitration priority rotates

Page 147 - I/O Port 6-15

7-12 System RegistersTable 7-4 TLBER Register Bit Definitions (Continued)Name Bit(s) Type FunctionBAE<2> W1C, 0 Bank Available Violation Erro

Page 148 - BXB0819.AI

System Registers 7-13Table 7-4 TLBER Register Bit Definitions (Continued)Name Bit(s) Type FunctionATCE<0> W1C, 0 Address Transmit Chec

Page 149 - I/O Port 6-17

7-14 System RegistersTLCNR—Configuration RegisterAddressAccessBB + 0080R/WThe TLCNR register contains the TLSB system configuration setupand status

Page 150 - BXB0797.AI

System Registers 7-15 Table 7-5 TLCNR Register Bit DefinitionsName Bit(s) Type FunctionLOFE<31> R/W, 0 Lock on First Error. If set, t

Page 151 - I/O Port 6-19

7-16 System RegistersTable 7-5 TLCNR Register Bit Definitions (Continued)Name Bit(s) Type FunctionSTF_B<13> R/W, 1 Self-Test Fail B. When se

Page 152 - BXB0796.AI

System Registers 7-17Table 7-5 TLCNR Register Bit Definitions (Continued)Name Bit(s) Type FunctionVCNT<11:8> R/W, 0 Virtual Unit Count

Page 153 - I/O Port 6-21

7-18 System RegistersTable 7-5 TLCNR Register Bit Definitions (Continued)Each node on the TLSB can contain up to two individually addressableunits.

Page 154 - BXB0818.AI

System Registers 7-19TLVID—Virtual ID Register AddressAccessBB + 00C0R/WThe TLVID register contains the TLSB virtual identifiers assignedto a

Page 155 - 6.5 TLSB Interface

7-20 System Registers Table 7-6 TLVID Register Bit DefinitionsName Bit(s) Type FunctionRSVD<31:8> R/W, 0 Reserved. Must be written as zero.V

Page 156 - 6.5.1.1 DMA Transactions

System Registers 7-21TLMMRn—Memory Mapping Registers Table 7-7 TLMMRn Register Bit DefinitionsAddressAccessBB + 0200 to BB + 03C0W (CPU), R

Page 157 - X = Don’t care

1-4 Overviewto the DECchip 21164 Functional Specification for a complete descriptionof the DECchip 21164 and PALcode. 1.3.2 Backup CacheEach backu

Page 158 - 6-26 I/O Port

7-22 System RegistersTable 7-7 TLMMRn Register Bit Definitions (Continued) Table 7-8 Interleave Field Values for Two-Bank Memory ModulesName Bit(

Page 159 - BXB0814.AI

System Registers 7-23 Table 7-9 Address Ranges Selected by ADRMASK Field Values<ADRMASK>AddressRangeTLSB_ADR BitsComparedTLSB_ADR Bits

Page 160 - 6.5.1.3 CSR Transactions

7-24 System RegistersTLFADRn—Failing Address Registers Table 7-10 TLFADRn Register Bit DefinitionsAddressAccessBB + 0600, 0640R/WThe TLFADRn regis

Page 161 - I/O Port 6-29

System Registers 7-25Table 7-10 TLFADRn Register Bit Definitions (Continued)The TLFADRn registers are updated on the following conditions, l

Page 162 - 6.5.2 TLSB Arbitration

7-26 System RegistersTLESRn—Error Syndrome Registers Table 7-11 TLESRn Register Bit DefinitionsAddressAccessBB + 0680 through 0740R/WThe TLESRn re

Page 163 - I/O Port 6-31

System Registers 7-27Table 7-11 TLESRn Register Bit Definitions (Continued)Name Bit(s) Type FunctionCPU1RSVDRSVD<23> RO, 0R0R0CPU 1.

Page 164 - BXB0800.AI

7-28 System RegistersTable 7-11 TLESRn Register Bit Definitions (Continued)The four TLESRn registers are independent of each other. Each registerd

Page 165 - 6.5.2.2 Read-Modify-Write

System Registers 7-29Four error bits in the TLBER register will set as a result of the five errorbits in this register.• CRECC sets TLBER<

Page 166 - 6.5.2.5 Arbitration Suppress

7-30 System RegistersTLILIDn—Interrupt Level IDENT Registers Table 7-12 TLILIDn Register Bit DefinitionsNOTE: An internally generated I/O port er

Page 167 - 6.6 Hose Interface

System Registers 7-31TLCPUMASK—CPU Interrupt Mask Register Table 7-13 TLCPUMASK Register Bit DefinitionsAddressAccessBB + 0B00R/WThe TLCPUM

Page 168 - 6.6.2 Window Space Mapping

Overview 1-5ported by a single motherboard design. The 2-Gbyte memory option uses a different motherboard and SIMM design. A maximum of seve

Page 169 - 6.6.3 Hose Signals

7-32 System RegistersTLMBPR—Mailbox Pointer Registers Table 7-14 TLMBPR Register Bit DefinitionsFigure 7-1 shows the mailbox data structure.Address

Page 170 - Table 6-11 Up Hose Signals

System Registers 7-33 Figure 7-1 Mailbox Data StructureTable 7-15 gives the description of the mailbox data structure fields. Table 7-15 Mai

Page 171 - I/O Port 6-39

7-34 System RegistersTable 7-15 Mailbox Data Structure Description (Continued)QW Bit(s) Name Description4<63:0> RDATA Read Data. For read c

Page 172 - 6-40 I/O Port

System Registers 7-35TLIPINTR—Interprocessor Interrupt Register Table 7-16 TLIPINTR Register Bit DefinitionsTo post an interprocessor interr

Page 173 - Mailbox Command Packet

7-36 System RegistersTLIOINTRn—I/O Interrupt Registers Table 7-17 TLI/OINTR Register Bit DefinitionsTo post an interrupt, the I/O port writes the

Page 174 - 6-42 I/O Port

System Registers 7-37means that all CPUs accept writes to these registers. Multiple writes to aregister post multiple interrupts. Reads to

Page 175 - I/O Port 6-43

7-38 System RegistersTLWSDQR4-8—Window Space Decr Queue CounterRegistersAddressAccessBSB + 0400 through 0500R/WThe TLWSDQRn registers are used by an

Page 176 - 31 24 23 22 13 12 11 10 087

System Registers 7-39TLRMDQRX—Memory Channel Decr Queue CounterRegister X AddressAccessBSB + 0600 R/WThe TLRMDQR register X is used by an I/O

Page 177 - 31 20 19

7-40 System RegistersTLRMDQR8—Memory Channel Decr Queue CounterRegister 8 AddressAccessBSB + 0640 R/WThe TLRMDQR register 8 is used by an I/O node t

Page 178 - 6-46 I/O Port

System Registers 7-41TLRDRD—CSR Read Data Return Data Register Table 7-18 TLRDRD Register Bit DefinitionsAddressAccessBSB + 0800 WThe TLRDRD

Page 179 - I/O Port 6-47

1-6 Overviewtion to two 10BaseT Ethernet ports, one FDDI port, and three FWD andone single-ended SCSI ports. The DWLMA is the interface between a h

Page 180 - DND <31:0>

7-42 System RegistersTLRDRE—CSR Read Data Return Error Register AddressAccessBSB + 0840 WThe TLRDRE register is used by I/O nodes to signal an error

Page 181 - I/O Port 6-49

System Registers 7-43TLMCR—Memory Control Register Table 7-19 TLMCR Register Bit DefinitionsAddressAccessBSB + 1880 WThe TLMCR register is u

Page 182 - 6-50 I/O Port

7-44 System Registers7.4 CPU Module RegistersCPU module registers are divided into four groups:• Module-specific registers• CPU0-specific registers

Page 183 - Figure 6-22 Byte Mask Field

System Registers 7-45 Table 7-20 CPU Module RegistersMnemonic Name AddressModule RegistersTLDIAGTLDTAGDATATLDTAGSTATTLMODCONFIGTLCON00TLCON0

Page 184 - 6-52 I/O Port

7-46 System RegistersTable 7-20 CPU Module Registers (Continued) Table 7-21 Gbus RegistersMnemonic Name AddressModule RegistersRM_RANGE_0ARM_RANG

Page 185 - BXB-0644-93

System Registers 7-47TLDIAG—Diagnostic Setup Register Table 7-22 TLDIAG Register Bit DefinitionsAddressAccessBB + 1000 R/WThe TLDIAG regist

Page 186 - BXB-0278-92

7-48 System RegistersTable 7-22 TLDIAG Register Bit Definitions (Continued)Name Bit(s) Type FunctionASRT_FLTRSVDFDE<3:0>FDBERSVDDTCPDTRDDTWR

Page 187 - I/O Port 6-55

System Registers 7-49Table 7-22 TLDIAG Register Bit Definitions (Continued)Name Bit(s) Type FunctionDTWR<1> W, 0 DTag Write. When se

Page 188 - BXB-0640-93

7-50 System RegistersTLDTAGDATA—DTag Data Register Table 7-23 TLDTAGDATA Register Bit DefinitionsAddressAccessBB + 1040R/WDiagnostics test the DTag

Page 189 - DMA Masked Write with Data

System Registers 7-51TLDTAGSTAT—DTag Status Register Table 7-24 TLDTAGSTAT Register Bit DefinitionsAddressAccessBB + 1080R/WDiagnostics test

Page 190 - 6-58 I/O Port

Overview 1-7• KDM70 – XMI to SI disk/tape • KZMSA – XMI to SCSI disk/tape • KFMSB – XMI to DSSI disk/tape and OpenVMS clusters • CIXCD-AC – X

Page 191 - BXB-0786-94

7-52 System RegistersTLMODCONFIG—CPU Module Configuration Register Table 7-25 TLMODCONFIG Register Bit DefinitionsAddressAccessBB + 10C0R/WThe TLM

Page 192 - BXB-0647-93

System Registers 7-53Table 7-25 TLMODCONFIG Register Bit Definitions (Continued)NOTE: A write to the TLMODCONFIG register must be followed

Page 193 - BXB-0788-94

7-54 System RegistersTLEPAERR— ADG Error Register AddressAccessBB + 1500R/WThe ADG Error Register contains CPU module error bits. Thesebits are set

Page 194 - 6-62 I/O Port

System Registers 7-55 Table 7-26 TLEPAERR Register Bit DefinitionsName Bit(s) Type FunctionRSVDNO_ACKCSR_WR_NXMWSPC_RD_PENDIBOXTOWSPC_RD_ERR

Page 195 - BXB-0787-94

7-56 System RegistersTable 7-26 TLEPAERR Register Bit Definitions (Continued)Name Bit(s) Type FunctionM2AAPE1M2AAPE0E2MAPE1E2MAPE0<3><2&g

Page 196 - BXB-0565-94

System Registers 7-57TLEPDERR—DIGA Error Register AddressAccessBB + 1540R/WThe TLEPDERR register contains CPU module error bits. Thesebits ar

Page 197 - 6.6.5 Hose Errors

7-58 System Registers Table 7-27 TLEPDERR Register Bit DefinitionsName Bit(s) Type FunctionRSVDGBTO<31:3><2>R/W, 0W1C, 0Reserved. Must

Page 198 - 6.7 I/O Port Error Handling

System Registers 7-59TLEPMERR—MMG Error Register AddressAccessBB + 1580R/WThe TLEPMERR register contains CPU module error bits. Thesebits are

Page 199 - 6.7.5.1 TLSB_DATA_ERROR

7-60 System Registers Table 7-28 TLEPMERR Register Bit DefinitionsName Bit(s) Type FunctionRSVDRSTSTATD2DCPE3D2DCPE2D2DCPE1<31:7><6><

Page 200 - 6.7.5.2 TLSB_FAULT

System Registers 7-61Table 7-28 TLEPMERR Register Bit Definitions (Continued)Name Bit(s) Type FunctionD2MCPEA2MAPE1A2MAPE0<2><1>

Page 201 - I/O Port 6-69

1-8 Overview— Cache/memory exerciser— I/O port/DWLMA loopback exerciser — Disk/tape device exerciser — Network exerciser — FBE exerciser — XCT (XMI

Page 202 - 6.7.7 Address Bus Errors

7-62 System RegistersTLEP_VMG—Voltage Margining Register Table 7-29 TLEP_VMG Register Bit DefinitionsAddressAccessBB + 15C0R/WThe TLEP_VMG register

Page 203 - 6.7.7.5 Bank Busy Violation

System Registers 7-63TLINTRMASK0–1—Interrupt Mask Registers AddressAccessBB + 1100, BB + 1140R/WThe TLINTRMASK0–1 registers are used to enab

Page 204 - 6.7.8.2 Double-Bit ECC Errors

7-64 System Registers Table 7-30 TLEPDERR Register Bit DefinitionsName Bit(s) Type FunctionRSVDCtrl/P_HALT_ENAHALT_ENAINTIM_ENAIP_ENAIPL17_ENAIPL16

Page 205 - 6.7.8.5 Data Status Errors

System Registers 7-65TLINTRSUM0–1—Interrupt Source Registers AddressAccessBB + 1180, BB + 11C0R/WThe DECchip 21164 has seven interrupt lines.

Page 206 - 6.7.8.6 Transmit Check Errors

7-66 System Registers Table 7-31 TLINTRSUM Register Bit DefinitionsName Bit(s) Type FunctionRSVDHALTCtrl/P_HALTIPL17_INTRIPL16_INTRIPL15_INTR<31

Page 207 - 6.7.10.1 Up Hose Errors

System Registers 7-67Table 7-31 TLINTRSUM Register Bit Definitions (Continued)Name Bit(s) Type FunctionIPL14_INTRINTIM_INTRIP_INTRIPL17_INT

Page 208 - 6-76 I/O Port

7-68 System RegistersTLCON00,01,10,11—Console Communications RegsAddressAccessBB + 1200 & 1400; BB + 1300 & 1440R/WTwo 32-bit wide register

Page 209 - I/O Port 6-77

System Registers 7-69TLCON0A,0B,0C,1A,1B,1C—DIGA Comm. Test RegsThe Console Communications registers are implemented in DIGA0. Thesame regis

Page 210 - 6.8 KFTIA Overview

7-70 System RegistersRM_RANGE_nA,B—Memory Channel Range RegsAddressAccessBB + 1E00 through 1EC0R/WThe Memory Channel Range registers define the two

Page 211 - BXB0793.AI

System Registers 7-71 Table 7-32 Memory Channel Range Register Bit DefinitionsName Bit(s) Type FunctionVALIDRSVDBASE_ADR<38:20> RSVDIN

Page 212 - 6-80 I/O Port

TLSB Bus 2-1Chapter 2TLSB BusThis chapter provides a brief overview of the TLSB bus. For more detaileddiscussions and timing diagrams for th

Page 213 - I/O Port 6-81

7-72 System RegistersTLDMCMD—Data Mover Command RegisterAddressAccessBB + 1600R/WThe TLDMCMD register controls the data mover transactions.31 30 29

Page 214 - 6.8.1.2 SCSI Ports

System Registers 7-73 Table 7-33 TLDMCMD Register Bit DefinitionsName Bit(s) Type FunctionDM_DONEIN_PROGRSVDCPU_IDRSVDRM_INTLVRM_4RM_3DM_CMD

Page 215 - 6.8.2.1 DMA Transactions

7-74 System RegistersTable 7-33 TLDMCMD Register Bit Definitions (Continued)Name Bit(s) Type FunctionDM_CMDRSVDDM_8KBDM_4KBDM_2KBDM_1KBDM_512B<

Page 216 - 6.8.2.3 CSR Transactions

System Registers 7-75TLDMADRA—Data Mover Source Address Register Table 7-34 TLDMADRA Register Bit DefinitionsAddressAccessBB + 1680WThe TLM

Page 217 - I/O Port 6-85

7-76 System RegistersTLDMADRB—Data Mover Destination Address Reg Table 7-35 TLDMADRB Register Bit DefinitionsAddressAccessBB + 16C0WThe TLMADRB re

Page 218

System Registers 7-77GBUS$WHAMI Table 7-36 GBUS$WHAMI Register Bit DefinitionsAddressAccessFF C000 0000R/WThe GBUS$WHAMI register provides n

Page 219 - System Registers

7-78 System RegistersGBUS$LED0,1,2AddressAccessFF C100 0000, FF C200 0000, FF C300 0000R/WThe GBUS$LEDn registers are used by diagnostics to indicat

Page 220 - 7.2 Register Address Mapping

System Registers 7-79GBUS$MISCRAddressAccessFF C400 0000RThe GBUS$MISCR register is used to gather various read bits thatshow module configur

Page 221 - System Registers 7-3

7-80 System Registers Table 7-37 GBUS$MISCR Register Bit DefinitionsName Bit(s) Type FunctionCONWIN1RCONWIN0RRSVDTLSB_RUNTLSB_SECUREPROCNTCACSIZ<

Page 222 - 7.3 TLSB Registers

System Registers 7-81GBUS$MISCW Table 7-38 GBUS$MISCW Register Bit DefinitionsAddressAccessFF C500 0000WThe GBUS$MISCW register is used to g

Page 223 - BXB-0491-93

iiiContentsPreface ...

Page 224 - 7-6 System Registers

2-2 TLSB Bus2.1.1 TransactionsA transaction couples a commander node that issues the request and aslave node that sequences the data bus to transf

Page 225 - TLBER—Bus Error Register

7-82 System RegistersGBUS$TLSBRSTAddressAccessFF C600 0000R/WThe GBUS$TLSBRST register is used to initiate a system reset se-quence. When this regi

Page 226 - 7-8 System Registers

System Registers 7-83GBUS$SERNUM Table 7-39 GBUS$SERNUM Register Bit DefinitionsAddressAccessFF C700 0000R/WThe GBUS$SERNUM register is used

Page 227 - System Registers 7-9

7-84 System RegistersTable 7-39 GBUS$SERNUM Register Bit Definitions (Continued)Name Bit(s) Type FunctionEXPSELXMT_DATARCV_DATASROM_CLK<4:3>

Page 228 - 7-10 System Registers

System Registers 7-857.5 Memory-Specific RegistersTable 7-40 lists the memory-specific registers. Descriptions follow.Refer to Table 7-2 fo

Page 229

7-86 System RegistersSECR—Serial EEPROM Control/Data Register Table 7-41 SECR Register Bit DefinitionsAddressAccessBB + 0000 1800 R/WThe SECR regi

Page 230 - 7-12 System Registers

System Registers 7-87MIR—Memory Interleave Register AddressAccessBB + 0000 1840R/WThe MIR register is used by memory to determine DRAM RAS se

Page 231

7-88 System Registers Table 7-42 MIR Register Bit DefinitionsName Bit(s) Type FunctionVALID<31> R/W, 0 Valid. When set, enables the module

Page 232 - TLCNR—Configuration Register

System Registers 7-89MCR—Memory Configuration RegisterAddressAccessBB + 0000 1880; BSB + 0000 1880R/WThe MCR register provides information ab

Page 233

7-90 System Registers Table 7-43 MCR Register Bit DefinitionsName Bit(s) Type FunctionBAT<31> R, none1Battery OK. Indicates the state of the

Page 234 - 7-16 System Registers

System Registers 7-91Table 7-43 MCR Register Bit Definitions (Continued)Name Bit(s) Type FunctionOPTION<9> R, X1Option Installed. Th

Page 235

TLSB Bus 2-3The TLSB implements parity checking on all address and command fieldson the address bus, ECC protection on the data field, and pr

Page 236 - 7-18 System Registers

7-92 System RegistersTable 7-43 MCR Register Bit Definitions (Continued)Name Bit(s) Type FunctionDTR<5:4> R/W, 0 DRAM Timing Rate. This fie

Page 237 - BXB-0493-93

System Registers 7-93STAIR—Self-Test Address Isolation Register Table 7-44 STAIR Register Bit DefinitionsAddress segments are mapped accord

Page 238 - 7-20 System Registers

7-94 System Registers Table 7-45 STAIR Register Bit Correspondence of Memory Address SegmentsEach module executes self-test as if it were the only

Page 239 - BXB-0757-93

System Registers 7-95STER—Self-Test Error RegisterAddressAccessBB + 0000 1900R/WThe STER register contains address information pertaining to

Page 240 - 7-22 System Registers

7-96 System Registers Table 7-46 STER Register Bit DefinitionsName Bit(s) Type FunctionRSVD<31:8> R0 Reserved. Read as zero.STE3<7> W1

Page 241

System Registers 7-97MER—Memory Error Register Table 7-47 MER Register Bit DefinitionsAddressAccessBB + 0000 1940R/WThe MER register provide

Page 242 - 7-24 System Registers

7-98 System RegistersMDRA—Memory Diagnostic Register A Table 7-48 MDRA Register Bit DefinitionsAddressAccessBB + 0000 1980R/WMDRA register A is u

Page 243

System Registers 7-99Table 7-48 MDRA Register Bit Definitions (Continued)Name Bit(s) Type FunctionRFR<29:28> R/W, 01 Refresh Rate. D

Page 244 - 7-26 System Registers

7-100 System RegistersTable 7-48 MDRA Register Bit Definitions (Continued)Name Bit(s) Type FunctionPOEM1<6> R/W, 01 Pause on Error Mode. Wh

Page 245

System Registers 7-101Table 7-48 MDRA Register Bit Definitions (Continued)Name Bit(s) Type FunctionFCAPE<2> R/W, 0 Force Column Addre

Page 246 - 7-28 System Registers

2-4 TLSB BusTable 2-1 TLSB Bus Signals (Continued)Signal Name Default State FunctionTLSB_PS_TX LTLSB_EXP_SEL<1:0> LTLSB_SECURE LLDC_PWR_OK L

Page 247

7-102 System RegistersMDRB—Memory Diagnostic Register B Table 7-49 MDRB Register Bit DefinitionsAddressAccessBB + 0000 19C0R/WMemory Diagnostic Reg

Page 248 - BXB-0495-93

System Registers 7-103STDERA,B,C,D,E—Self-Test Data Error Registers The function of STDERA is slightly different from the other four register

Page 249 - BXB-0776-93

7-104 System Registers Table 7-50 STDER A, B, C, D Register Bit DefinitionsTable 7-51 describes each field of self-test data error register E. Thi

Page 250 - MBZMBX_ADR <39:6>

System Registers 7-105 Table 7-51 STDERE Register Bit DefinitionsName Bit(s) Type FunctionRSVD<31:19> R0 Reserved. Read as zero.VRC&l

Page 251 - BXB-0174 C-94

7-106 System RegistersDDR0:3—Data Diagnostic Registers Table 7-52 DDRn Register Bit DefinitionsAddressAccessBB + 0001 0140; 0001 04140; 0001 8140;

Page 252 - 7-34 System Registers

System Registers 7-107Table 7-52 DDRn Register Bit Definitions (Continued)Name Bit(s) Type FunctionEFLPD<15> R/W, 0 Enable Flip Data

Page 253 - BXB-0497-93

7-108 System RegistersTable 7-52 DDRn Register Bit Definitions (Continued)Name Bit(s) Type FunctionICFR<2> R/W, 0 Inhibit Clear on Free Run.

Page 254 - 20 19 18 17

System Registers 7-1097.6 I/O Port-Specific RegistersThe I/O port responds to all addresses within its node space. If, however,the I/O port

Page 255

7-110 System RegistersRMRR0-1—Memory Channel Range RegistersAddressAccessBB + 1E00 to 1EC0 R/WThe I/O port houses two incoming Memory Channel addres

Page 256 - BXB-0541V-93

System Registers 7-111 Table 7-54 RMRR0-1 Register Bit DefinitionsName Bit(s) Type FunctionVALIDRSVDBASE_ADR<38:20> RSVDINTLV_ENEXT_MA

Page 257

TLSB Bus 2-52.2 OperationThis section offers an overview of the TLSB bus operations. Topics in-clude: • Physical node identification• Virtu

Page 258

7-112 System RegistersICCMSR—I/O Control Chip Mode Select Register Table 7-55 ICCMSR Register Bit DefinitionsAddressAccessBB + 2000 R/WThe ICCMSR r

Page 259 - BXB-0541V1-93

System Registers 7-113Table 7-55 ICCMSR Register Bit Definitions (Continued)Name Bit(s) Type FunctionSUP_CTL<1:0><3:2> R/W, 0 S

Page 260

7-114 System RegistersTable 7-55 ICCMSR Register Bit Definitions (Continued)Name Bit(s) Type FunctionSUP_CTL<1:0>ARB_CTL<1:0><3:2&g

Page 261 - BXB-0760-93

System Registers 7-115Table 7-55 ICCMSR Register Bit Definitions (Continued)Name Bit(s) Type FunctionARB_CTL<1:0><1:0> R/W, 0AR

Page 262 - 7.4 CPU Module Registers

7-116 System RegistersTable 7-55 ICCMSR Register Bit Definitions (Continued)Name Bit(s) Type FunctionARB_CTL<1:0><1:0> R/W, 0ARB_CTL F

Page 263

System Registers 7-117ICCNSE—I/O Control Chip Node-Specific Error RegAddressAccessBB + 2040R/WThe ICCNSE register logs the collective error i

Page 264 - Table 7-21 Gbus Registers

7-118 System Registers Table 7-56 ICCNSE Register Bit DefinitionsName Bit(s) Type FunctionINTR_NSES<31> R/W, 0 Interrupt on NSES. When set,

Page 265 - BXB-0500-93

System Registers 7-119Table 7-56 ICCNSE Register Bit Definitions (Continued)Name Bit(s) Type FunctionUP_VRTX_ERR<26:25> W1C, 0 Up Vor

Page 266 - 7-48 System Registers

7-120 System RegistersTable 7-56 ICCNSE Register Bit Definitions (Continued)Name Bit(s) Type FunctionMULT_INTR_ERR<22> W1C, 0 Multiple Inter

Page 267

System Registers 7-121Table 7-56 ICCNSE Register Bit Definitions (Continued)Name Bit(s) Type FunctionUP_HOSE_PKT_ERR<15:12> W1C, 0 Up

Page 268 - BXB-0755-93

2-6 TLSB Bus2.2.2 Virtual Node IdentificationTLSB system operation requires that certain functional units can be iden-tified uniquely, independent

Page 269 - BXB-0777-93

7-122 System RegistersICCDR—I/O Control Chip Diagnostic RegisterAddressAccessBB + 2080R/WThe ICCDR register can be programmed by diagnostics to forc

Page 270 - 7-52 System Registers

System Registers 7-123 Table 7-57 ICCDR Register Bit DefinitionsName Bit(s) Type FunctionENA_DMA_HID<31> R/W, 0 Enable DMA Hose ID. W

Page 271

7-124 System RegistersTable 7-57 ICCDR Register Bit Definitions (Continued)Name Bit(s) Type FunctionDIS_TLSB_FAULT<4> R/W, 0 Disable TLSB Fa

Page 272 - TLEPAERR— ADG Error Register

System Registers 7-125ICCMTR—I/O Control Chip Mailbox Transaction RegAddressAccessBB + 20C0RThe ICCMTR register indicates if a mailbox transa

Page 273

7-126 System Registers Table 7-58 ICCMTR Register Bit DefinitionsName Bit(s) Type FunctionRSVD <31:4> R0 Reserved. Read as zeros. MBX_TIP<

Page 274 - 7-56 System Registers

System Registers 7-127ICCWTR—I/O Control Chip Window Transaction Reg Table 7-59 ICCWTR Register Bit DefinitionsAddressAccessBB + 2100RThe IC

Page 275 - BXB-0503-93

7-128 System RegistersIDPNSE0–3—I/O Data Path Node-Specific Error Regs AddressAccessBB + 2A40, 2140, 2240, 2340R/WThe IDPNSE0–3 registers are physic

Page 276 - 7-58 System Registers

System Registers 7-129 Table 7-60 IDPNSE0–3 Register Bit DefinitionsName Bit(s) Type FunctionHOSEn_RESET<31> W, 0 HOSEn Reset. When t

Page 277 - TLEPMERR—MMG Error Register

7-130 System RegistersTable 7-60 IDPNSE0–3 Register Bit Definitions (Continued)Name Bit(s) Type FunctionIDR_UP_VRTX_ERR<26:25> W1C, 0 IDR Up

Page 278 - 7-60 System Registers

System Registers 7-131Table 7-60 IDPNSE0–3 Register Bit Definitions (Continued)Name Bit(s) Type FunctionHOSEn_PWROK_TR<3> W1C, X HOSE

Page 279

TLSB Bus 2-7drive the address and command, the outcome of the tag lookup can beevaluated by the bus interface. If the lookup is a hit, then

Page 280 - 5V + 5%

7-132 System RegistersTable 7-60 IDPNSE0–3 Register Bit Definitions (Continued)Name Bit(s) Type FunctionHOSEn_PWROK<1> R, X HOSEn Power OK.

Page 281 - BXB-0770-93

System Registers 7-133IDPDRn—I/O Data Path Diagnostic RegistersAddressAccessBB + 2A80, 2180, 2280, 2380R/WThe IDPDRn registers can be program

Page 282 - 7-64 System Registers

7-134 System Registers Table 7-61 IDPDR0–3 Register Bit DefinitionsName Bit(s) Type FunctionVOLT_MARG<31> R/W, 0 Voltage Margin. When set, t

Page 283 - BXB-0510-93

System Registers 7-135Table 7-61 IDPDR0–3 Register Bit Definitions (Continued)Name Bit(s) Type FunctionFRC_VAL_SEQ_ERR<19> R/W, 0 For

Page 284 - 7-66 System Registers

7-136 System Registers Table 7-62 Error Matrix for Force Error BitsSet Diagnostic Bit Perform Transaction Detect ErrorIDPDR0<FRC_CSR_BUS_DPE>

Page 285

System Registers 7-137IDPVR—I/O Data Path Vector Register Table 7-63 IDPVR Register Bit DefinitionsAddressAccessBB + 2B40R/WThe IDPVR regis

Page 286 - BXB-0723-94

7-138 System RegistersIDPMSR—I/O Data Path Mode Select RegisterAddressAccessBB + 2B80R/WThe IDPMSR register can be used by software to select the de

Page 287 - BXB-0724-94

System Registers 7-139 Table 7-64 IDPMSR Register Bit DefinitionsName Bit(s) Type FunctionRSVD<31:2> R/W, 0 Reserved. Read as zeros.

Page 288 - 28 2 7 4387

7-140 System RegistersIBR—Information Base Repair RegisterAddressAccessBB + 2BC0R/WThe IBR register is used to access the EEPROM located on the I/O

Page 289

System Registers 7-141 Table 7-65 IBR Register Bit DefinitionsName Bit(s) Type FunctionRSVD<31:3> R/W, 0 Reserved. Read as zeros. SC

Page 290 - 7-72 System Registers

2-8 TLSB Bus2.2.3.1 Memory Bank Addressing SchemeThe TLSB supports one terabyte of physical memory. The memory ad-dress space is accessed by a 40-b

Page 291

7-142 System Registers7.7 KFTIA Specific RegistersRegisters specific to the integrated I/O module, the KFTIA (registers in ad-dition to those speci

Page 292 - 7-74 System Registers

Interrupts 8-1Chapter 8InterruptsThe TLSB supports both vectored and nonvectored interrupts. • Vectored interrupts are the traditional I/O

Page 293 - BXB-0772-93

8-2 Interrupts• At most, four interrupts at levels 0, 1, and 2 can be pending on theTLSB bus (one per interrupt level 14, 15, and 16, respectively,

Page 294 - BXB-0771-93

Interrupts 8-3• The targeted CPUs are interrupted at an appropriate level and theCPU issues a CSR read transaction over the TLSB bus to the

Page 295 - BXB-0514-93

8-4 InterruptsRefer to Chapter 7 for the format of all registers used in the interrupt op-eration.8.3.1.1 Virtual Node Identification - TLVIDTLSB sy

Page 296 - BXB-0726-93

Interrupts 8-5only to TLIOINTR4. Interrupts at the IPL level(s) specified in bits<19:16> are targeted at the VIDs specified in bits &l

Page 297 - BXB-0725-93

8-6 InterruptsTLIPINTR register and interrupts either (or both) of the CPUs as appro-priate, based on their virtual node IDs. The interprocessor in

Page 298 - 7-80 System Registers

Glossary-1GlossaryADGAddress gate array.BankSmallest group of DRAMs that can be interleaved. A bank consists of oneor more strings. Block64 byt

Page 299 - BXB-0515-93

Glossary-2FNSFast, narrow, single-ended. FWDFast, wide, differential. Internal HoseThe connection (etch pathway) between the TLSB interface and the i

Page 300 - BXB-0727-93

Glossary-3StringThe smallest group of DRAMs (144 1/4M x 4) needed to store and retrieve64 bytes of data per TLSB transaction. In some array impleme

Page 301 - GBUS$SERNUM

TLSB Bus 2-92.2.3.3 Memory Bank Address DecodingThe minimum bank size for the TLSB address decode scheme is 64Mbytes. To address memory, a CP

Page 303

Index-1IndexAABTCE, 7-8Accessing remote I/O CSRs, 6-15Accessing through I/O window space, 6-15Accessing through mailboxes, 6-14Access, remote I/O CSR,

Page 304 - BXB-0729-94

Index-2A2MAPE1, 7-61BBackup cache, 1-4, 4-2BAE, 7-12BANKV, 7-24Bank address decoding, 2-9Bank available flags, 5-4Bank available status, 2-11Bank avai

Page 305 - BXB-0730-94

Index-3Correctable Read Data Error bit, 7-9Correctable Read Data Error Interrupt Disablebit, 7-18Correctable Read ECC Error bit, 7-27Correctable Write

Page 306 - 7-88 System Registers

Index-4Data return format, 2-19Data status errors, 2-41, 6-73Data Status Error bit, 7-8Data Syndrome 0 bit, 7-9Data Syndrome 1 bit, 7-9Data Syndrome 2

Page 307 - BXB-0769-93

Index-5Drive TLSB Bad bit, 7-81DRIVE_BAD, 7-81DRIVE_CONWIN, 7-81DRIVE_RUN, 7-81DSE, 7-8DS0, 7-9DS1, 7-9DS2, 7-9DS3, 7-9DTag CPU bit, 7-48DTag Data Ent

Page 308 - 7-90 System Registers

Index-6False arbitration, 2-7, 2-14Fatal Data Transmit Check Error bit, 7-8Fatal No Acknowledge Error bit, 7-10Fault Disable bit, 7-52FAULT_DIS, 7-52F

Page 309

Index-7ICCNSE register, 7-117ICCWTR register, 7-127ICC and IDP internal illogical errors, 6-77ICC CSR Bus Par Err bit, 7-118ICC Internal Error bit, 7-

Page 310 - 7-92 System Registers

Index-8I/O Control Chip Node-Specific Error register,7-117I/O Ctrl Chip Window Transaction register,7-127I/O Data Path Diagnostic register, 7-133I/O D

Page 311 - BXB-0732-93

Index-9Memory mapping register error, 3-18, 6-71Memory Mapping Register Error bit, 7-10memory module capacity, 7-105Memory module, overview, 1-4Memory

Page 312 - 7-94 System Registers

2-10 TLSB Bus Figure 2-2 Address DecodeWhen a physical address is presented to the bank decode logic, all valid ad-dress bits, as determined by the

Page 313 - 31 43 08765 2

Index-10CPU Module Configuration, 7-52Data Diagnostic, 7-106Data Mover Command, 7-72Data Mover Destination Address, 7-76Data Mover Source Address, 7-7

Page 314 - 7-96 System Registers

Index-11Self-Test Error in MDI0 bit, 7-96Self-Test Error in MDI1 bit, 7-96Self-Test Error in MDI2 bit, 7-96Self-Test Error in MDI3 bit, 7-96Self-Test

Page 315 - MER—Memory Error Register

Index-12TLEPMERR register, 7-59TLEP_VMG register, 7-62TLESR0-3 registers, 7-26TLFADR0-1 registers, 7-24TLILID0-3 registers, 7-30TLINTRMASK register, 7

Page 316 - BXB-0752-92

Index-13UECC, 7-27Uncorrectable Data Error bit, 7-10Uncorrectable ECC Error bit, 7-27Unexpected acknowledge, 6-71Unexpected Acknowledge bit, 7-8Unexpe

Page 317

TLSB Bus 2-112.2.3.4 Bank Available StatusTLSB_BANK_AVL indicates that a bank is available for use. When notasserted, no requests except Wri

Page 318 - 7-100 System Registers

iv2.2.4.3 Address Bus Transactions ... 2-122.2.4.4 Module Transactions...

Page 319

2-12 TLSB Bus2.2.4 Address Bus ArbitrationThe TLSB bus has demultiplexed address and data buses. These buses op-erate independently and are relat

Page 320 - BXB-0753-93

TLSB Bus 2-13Consequently, the priority of any device will eventually bubble up to thehighest level. The no-op command is the only non-data

Page 321 - BXB-0754-93

2-14 TLSB Busin a request cycle, that CPU must take part in the following arbitration cy-cle even if the bus is no longer required. If the device wi

Page 322 - 7-104 System Registers

TLSB Bus 2-15CPUs can request the bus without first checking that the bank is busy. Ifthe bank does turn out to be busy, this is considered

Page 323

2-16 TLSB Busin subsequent CSR accesses, and it is not ready to source or accept data, itcan delay asserting TLSB_SEND_DATA, or it can assert TLSB_H

Page 324 - 7-106 System Registers

TLSB Bus 2-17• No-op command cyclesTwo signals are used to provide parity protection on the address bus dur-ing all command cycles. TLSB_CMD

Page 325

2-18 TLSB BusWrite Bank UnlockUsed by the I/O port to complete a Read-Modify-Write. Writes the dataspecified by the address and bank number and unl

Page 326 - 7-108 System Registers

TLSB Bus 2-192.2.7.3 Back-to-Back Return DataTwo memory read transactions are returned back to back as follows.TLSB_SEND_DATA for the first t

Page 327

2-20 TLSB BusIf one CPU drives TLSB_HOLD while another drives TLSB_SHARED orTLSB_DIRTY, the second keeps driving TLSB_SHARED andTLSB_DIRTY. TLSB_HO

Page 328

TLSB Bus 2-21 Table 2-5 TLSB Data Wrapping2.2.8.6 ECC CodingData is protected using quadword ECC. The 256-bit data bus is dividedinto four

Page 329

v2.4.3.8 Multiple Address Bus Errors... 2-382.4.3.9 Summary of Address Bus Error

Page 330 - BXB-0768-94

2-22 TLSB BusCheck bits are computed by XORing all data bits corresponding to columnscontaining a one in the upper table and inverting bits <3:2&

Page 331

TLSB Bus 2-23TLSB_SHARED is valid when driven in response to Read, Read BankLock, Write, and Write Bank Unlock commands. Nodes may, therefor

Page 332 - 7-114 System Registers

2-24 TLSB Bus2.2.9 Miscellaneous Bus SignalsSeveral signals are required for correct system operation. They are:• TLSB_DATA_ERROR — A hard or sof

Page 333

TLSB Bus 2-25and allows the CPUs asserting TLSB_LOCKOUT to complete their bus ac-cess without interference.TLSB_LOCKOUT is asserted for one c

Page 334 - 7-116 System Registers

2-26 TLSB Bus Figure 2-4 TLSB CSR Address Bit Mapping2.3.1 CSR Address Space RegionsA total of 1 terabyte of physical address space can be mapped

Page 335 - BXB-0767-94

TLSB Bus 2-27 Figure 2-5 TLSB CSR Space MapAll TLSB node CSRs are 32 bits wide, except the TLMBPR and TLRDRDregisters, which are wider. Data

Page 336 - 7-118 System Registers

2-28 TLSB Bus Table 2-7 TLSB Node Base AddressesTable 2-8 shows the mapping of CSRs to node space and broadcast spacelocations. Locations are give

Page 337

TLSB Bus 2-29 Table 2-8 TLSB CSR Address MappingAddress Name MnemonicModules That Implement BB+000BB+040BB+080BB+0C0BB+200BB+240BB+280BB+2C0

Page 338 - 7-120 System Registers

2-30 TLSB Bus2.3.2 TLSB MailboxesCSRs that exist on external I/O buses connected to an I/O port (or anotherI/O module implementing mailbox registe

Page 339

TLSB Bus 2-31Table 2-9 describes the mailbox data structure. Table 2-9 Mailbox Data StructureThe mailbox address is a 64-byte aligned memory

Page 340 - 31 30 9 43 08765 12

viChapter 4 Memory Subsystem4.1 Internal Cache...

Page 341

2-32 TLSB Busstructure. Software may choose to reuse mailboxes (for example, multiplereads from the same CSR), or it may maintain templates that a

Page 342 - 7-124 System Registers

TLSB Bus 2-33predictable as the value has no significance. The I/O node may choose notto acknowledge the command and save data bus cycles.Th

Page 343 - MBX_TIP<3:0>

2-34 TLSB Bus2.4.1 Error CategoriesError occurrences can be categorized into four groups: • Hardware recovered soft errors • Software recovered so

Page 344 - 7-126 System Registers

TLSB Bus 2-352.4.2 Error SignalsThe TLSB provides two signals for broadcasting the detection of an error toother nodes. All nodes monitor

Page 345 - BXB-0761-94

2-36 TLSB Busevery cycle, enabled solely by the driven assertion value. For example,TLSB_CMD_ACK is assertion checked to verify that if this node at

Page 346 - 31 30 29 28 27 26 25 24 23

TLSB Bus 2-37When a commander node issues a CSR access command but does not re-ceive acknowledgment, it sets <NAE> in the TLBER registe

Page 347

2-38 TLSB BusBER<BAE> is set if the Write Bank Unlock command appears on the busbefore the second data cycle of the preceding Read Bank Lock c

Page 348 - 7-130 System Registers

TLSB Bus 2-39 Table 2-10 Address Bus Error Summary2.4.4 Data Bus ErrorsData bus errors are either ECC-detected errors or control errors.

Page 349

2-40 TLSB Bus2.4.4.1 Single-Bit ECC ErrorsA single-bit error on a memory data transfer is detected by a node’s ECCchecking logic. The decision to c

Page 350 - 7-132 System Registers

TLSB Bus 2-41This timeout can be disabled by software. The <DTOD> bit in the TLCNRregister prevents <DTO> from setting. It does

Page 351 - BXB-0562-94

vii5.2.2.3 CSR Write Data ECC Check ... 5-105.2.2.4 Forcing Write Errors for Dia

Page 352 - 7-134 System Registers

2-42 TLSB BusSystem fatal data bus errors are cumulative. Should a second system fatalerror occur, TLSB_FAULT is asserted a second time. If a fata

Page 353

TLSB Bus 2-43Some errors are more important to software than others. For example,should two correctable data errors occur, one during a writ

Page 354 - 7-136 System Registers

2-44 TLSB BusThe CSR registers contain information about the error. The commander’sTLBER register contains either correctable or uncorrectable erro

Page 355 - BXB-0759-93

TLSB Bus 2-452.4.6.2 Write ErrorsWrite data operations involve a minimum of two nodes. The commanderissues the command and transmits the dat

Page 356 - 7-138 System Registers

2-46 TLSB Busstill cause interrupts. Interrupts for correctable read data errors shouldalso be disabled, as read errors will result from not correct

Page 357

CPU Module 3-1Chapter 3CPU ModuleThe CPU module is a DECchip 21164 based dual-processor CPU module. Each CPU chip has a dedicated 4-Mbyte mo

Page 358 - BXB-0766-92

3-2 CPU Module Figure 3-1 CPU Module Simple Block Diagram3.1.1 DECchip 21164 ProcessorThe DECchip 21164 microprocessor is a CMOS-5 (0.5 micron) su

Page 359

CPU Module 3-3• On-chip 8-Kbyte virtual instruction cache with seven-bit ASNs(MAX_ASN=127).• On-chip dual-read-ported 8-Kbyte data cache (imp

Page 360 - 7.7 KFTIA Specific Registers

3-4 CPU ModuleTo facilitate the multiplexing of the 256 bits of TLSB data to the 128 bitsrequired by the DECchip 21164 interface, longwords (0,4), (

Page 361 - Interrupts

CPU Module 3-5• A set of module-level parallel I/O ports for functions such as LED status indicators and node identification • Two serial I/O

Page 362 - 8.1.2 CPU Interrupt Rules

viii6.5.3 Error Detection Schemes ... 6-346.6 Hose Interface ...

Page 363 - 8.3 I/O Interrupt Mechanism

3-6 CPU Module Table 3-1 Directly Addressable Console Hardware3.3 CPU Module Address SpaceDECchip 21164 supports one terabyte (40 bits) of address

Page 364 - 8-4 Interrupts

CPU Module 3-7from cache or the TLSB as shown in Table 3-2. Bit <4> specifies which16-byte portion of the 32-byte subblock is returne

Page 365 - 8.3.3 Servicing Interrupts

3-8 CPU Module3.3.2 I/O SpaceThe I/O space contains the I/O window space, TLSB CSR space, moduleGbus space, and DECchip 21164 private CSR space.

Page 366 - 8-6 Interrupts

CPU Module 3-93.3.2.3 Gbus SpaceThe Gbus is the collective term for the FEPROMs, console UARTs, watchchip, and module registers. All Gbus re

Page 367

3-10 CPU Module3.4 CPU Module Window Space SupportCSRs that exist on some external I/O buses are accessed through windowspace transactions. Rather

Page 368 - Glossary-2

CPU Module 3-11 Table 3-4 Decrement Queue Counter Address AssignmentsFor window space reads, the I/O port issues the write to the DecrementQ

Page 369 - Glossary-3

3-12 CPU Module Table 3-5 PCI Address Bit Descriptions3.4.4.1 Sparse Space Reads and WritesIn PCI sparse space, 128 bytes of address are mapped to

Page 370

CPU Module 3-13data issued by DECchip 21164 is transmitted on the TLSB, along with allthe INT4 mask bits. The I/O port pulls the appropriate

Page 371

3-14 CPU ModuleDense PCI memory space is longword addressable only. You cannot writeto individual bytes. You must do longword writes. You can do

Page 372

CPU Module 3-15are reported to DECchip 21164 through system machine check interrupts(IPL 1F hex - SYS_MCH_CHK_IRQ). The interrupt causes th

Page 373

ixChapter 7 System Registers7.1 Register Conventions ...

Page 374

3-16 CPU Module• Data Timeout Error (DTO)• Data Status Error (DSE) • Sequence Error (SEQE)• Data Control Transmit Check Error (DCTCE)• Address Bus T

Page 375

CPU Module 3-173.5.2.1 Transmit Check ErrorsA node must check that its bus assertions get onto the bus properly byreading from the bus and co

Page 376

3-18 CPU Module3.5.2.3 No Acknowledge ErrorsWhenever a commander node expects but does not receive an acknowledg-ment of its address transmission as

Page 377

CPU Module 3-193.5.4 Multiple ErrorsThe error registers can only hold information relative to one error. It isthe responsibility of softwa

Page 379

Memory Subsystem 4-1Chapter 4Memory SubsystemThe memory subsystem consists of hierarchically accessed levels that re-side in different locati

Page 380 - Index-10

4-2 Memory Subsystem4.1.3 Second-Level CacheThe second-level cache (S-cache) is a 96-Kbyte, 3-way set associative,physically addressed, write-back

Page 381 - Index-11

Memory Subsystem 4-34.2.2 B-Cache TagsMany locations in memory space can map onto one index in the cache. Toidentify which of these memory

Page 382 - Index-12

4-4 Memory Subsystem Figure 4-3 Cache Index and Tag Mapping to Block Address (16MB)4.2.3 Updates and InvalidatesIf a block is shared, and a CPU wa

Page 383 - Index-13

Memory Subsystem 4-5 Table 4-1 B-Cache StatesA block becomes valid when the block is allocated during a fill. A block be-comes invalid when

Comments to this Manuals

No comments